Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

TENDENCIES IN ENGINE DESIGN

1920-01-01
200013
War service demanded that gasoline engines be absolutely reliable in minor as well as major details of construction; lightness of construction was second in importance. The war scope of the gasoline engine was so wide that engineers were forced toward the solution of unexpected and unrealized problems and a vast amount of valuable data resulted. This information includes recent determination of the quantitative nature of the factors governing thermodynamic performance in respect to mean effective pressure, compression ratio and the effect of volumetric efficiency; mechanical performance in regard to mechanical efficiency and internal friction; and engine balancing.
Technical Paper

THE VELOCITY OF FLAME PROPAGATION IN ENGINE CYLINDERS

1920-01-01
200010
Flame propagation has received much attention, but few results directly applicable to operating conditions have been obtained. The paper describes a method devised for measuring the rate of flame propagation in gaseous mixtures and some experiments made to coordinate the phenomena with the important factors entering into engine operation; it depends upon the fact that bodies at a high temperature ionize the space about them, the bodies being either inert substances or burning gases. Experiments were made which showed that across a spark-gap in an atmosphere of compressed gas, as in an engine cylinder, a potential difference can be maintained which is just below the breakdown potential in the compressed gas before ignition but which is sufficient to arc the gap after ignition has taken place and the flame has supplied ionization. These experiments and the recording of the results photographically are described.
Technical Paper

ADAPTING ENGINES TO THE USE OF AVAILABLE FUELS

1920-01-01
200017
Some of the salient facts regarding the character of the engine fuel marketed within the past few years are shown in accompanying curves. The desirability of operating present-day experimental cars with fuel that is the equivalent of fuel that will probably be generally marketed two years hence is stated and various methods of meeting the fuel problem are then examined. A dry fuel mixture is desired to prevent spark-plug fouling, to improve engine performance in cold weather and to minimize lubricating oil contamination by fuel which passes the pistons. Various methods of obtaining a dry mixture are then discussed, leading to a detailed description of the construction and operation of a device specially designed to accomplish such a result more successfully.
Technical Paper

HIGH-SPEED INDICATORS

1920-01-01
200011
The indicator was an important factor in the early development of the internal-combustion engine when engine speeds were low, but on high-speed engines such indicators were unable to reliably reproduce records because of the inertia effects of the moving part of the pressure element. The first need is for a purely qualitative indicator of the so-called optical type, to secure a complete and instantaneous mental picture of the pressure events of the cycle; the second need is for a purely quantitative instrument for obtaining an exact record of pressures. The common requirements for both are that the indicator timing shall correctly follow the positions of the crank and that the pressure recorded shall agree with the pressures developed within the combustion space. Following a discussion of these requirements, the author then describes the demonstration made of two high-speed indicators, inclusive of various illustrations that show the apparatus, and comments upon its performance.
Technical Paper

STEAM AUTOMOTIVE SYSTEM

1920-01-01
200014
It is stated that the general performance of the steam-propelled automobile has never been equalled by that of the most highly-developed multiple-cylinder gasoline cars and that it is significant that no innovation in the gasoline car has yet been able to give steam-car performance. This led to an effort to remove the troublesome features of the steam car, rather than to complicate the gasoline car further by attempting to make it duplicate steam-car performance. The paper describes in detail the steam automotive system developed by the author and E. C. Newcomb, including the boiler, the combustion system and its control, the engine and the condensing system.
Technical Paper

PREIGNITION AND SPARK-PLUGS

1920-01-01
200015
The author proposes to determine what features of spark-plug construction cause preignition and how this preignition manifests itself. To this end observed conditions on an Hispano-Suiza aviation engine following 4 hr. of an intended 6-hr. run are reported, with supplementary tests and observations. This resulted in experiments made to determine the cause of preignition, using spark-plugs constructed so that different features of their design were exaggerated. Illustrations of these plugs are shown and the results obtained from their tests are described. The different observed peculiarities are then stated, analyzed and compared with normal spark-plug performance. The experiments serve as a means of identification of special forms of preignition and as an indication of the abnormally high temperatures to which valves and combustion-chamber walls are thus subjected.
Technical Paper

ADAPTING TRUCK AND TRACTOR ENGINES TO MOTOR-BOAT USE

1920-01-01
200021
The automobile engine, as used in passenger cars and a large percentage of trucks, is not adapted to use in motor boats. It is not built substantially enough for this, inasmuch as the power output of the motor-boat engine, except during starting or landing, is always 100 per cent. In view of this and because tractor, truck and marine engines are of the same family, it appears that if a truck or tractor engine were made with 100 per cent continuous power output capacity it would be satisfactory for marine use. The author describes and illustrates a tractor engine modified for marine use. The lubrication system of this engine is explained. The respective merits of right and left-hand engines are discussed. It is stated in a twin-screw boat that it is unnecessary to have both engines run out-board; that both can turn in the same direction without causing material difference in results.
Technical Paper

COMMENTS UPON FUELS, LUBRICANTS, ENGINE AND PISTON PERFORMANCE

1920-01-01
200019
The comments the author makes regarding fuels, lubricants and engine and piston performance are suggested by pertinent points appearing in papers presented at the 1920 Annual Meeting of the Society. A list of these papers is given. The subjects upon which comments are made include salability of a car, engine balancing, pressure and chemical constitution of gasoline at the instant of ignition, the use of aluminum pistons, the success attending the various departures from orthodox construction, gasoline deposition in the crankcase and cleanness of design, as stated by Mr. Pomeroy; the performance of a finely atomized mixture of liquid gasoline and air and the contamination of lubricating oil by the fuel which passes the pistons, as discussed by Mr. Vincent; the dilution of lubricating oil in engine crankcases and the saving that can be effected by its prevention, as mentioned by Mr. Kramer; and tight-fitting pistons and special rings as presented by Mr. Gunn.
Technical Paper

TRACTOR PLOWING SPEEDS

1920-01-01
200018
Among the problems before the designers of plowing tractors, none is more important than that of ascertaining the most economical plowing speed at which to operate a tractor to give first-class work at a minimum cost. The solution must be right from both the maunfacturer's and the farmer's standpoints. A variety of soil resistances, different speeds, widths and depth of cut, types and shapes of plows must be considered. The recently published draft data of Professor Davidson of Iowa State College and those of the Kansas State Agricultural College are used. They indicate in general that in each kind of soil, whether heavy or light, with speed increase there is a corresponding increase of draft, the amount of which is dependent upon the speed, shape of plow and nature of soil. The further experiments made relative to increased speed and draft and to the area plowed at different speeds are described and discussed, the results being shown by charts.
Technical Paper

FLYING AN AIRPLANE ENGINE ON THE GROUND

1920-01-01
200027
The very complete laboratory tests of airplane engines at ground level were of little aid in predicting performance with the reduced air pressures and temperatures met in flight. On the other hand, it was well-nigh impossible in a flight test to carry sufficient apparatus to measure the engine performance with anything like the desired completeness. The need clearly was to bring altitude conditions to the laboratory where adequate experimental apparatus was available and, to make this possible, the altitude chamber of the dynamometer laboratory at the Bureau of Standards was constructed. The two general classes of engine testing are to determine how good an engine is and how it can be improved, the latter including research and development work.
Technical Paper

MID-WEST SECTION PAPERS HEAVY-DUTY HIGH-SPEED ENGINE

1920-01-01
200076
The feeling that a truly heavy-duty engine for truck and tractor service was not available led the company represented by the authors to commence the development of an engine that would be capable of high speed as well as have ability to develop maximum horsepower and torque at low or medium speeds. Five specific requirements are stated for a tractor and three for a truck engine; the requirements of a universal truck and tractor engine are then specified under six headings. The special features of design of the engine developed are described in minute detail and illustrated by photographs and charts, seven definite features being mentioned as having been productive of the desired results. The testing apparatus is described and power and torque curves, a timing diagram and capacity curves of the water and oil-pumps are presented. Gasoline was used as fuel, although the engine is designed to use either gasoline or kerosene and is said to be adapted to the use of the heavier fuels.
Technical Paper

IGNITION FROM THE ENGINEMAN'S VIEWPOINT

1920-01-01
200071
Ignition is discussed in a broad and non-technical way. The definition of the word ignition should be broad enough to include the complete functioning of the ignition apparatus, beginning from the point where mechanical energy is absorbed to generate current and ending with the completion of the working stroke of the engine. The ignition system includes the mechanical drive to the magneto or generator and the task imposed on the system is by no means completed when a spark has passed over the gap of the spark-plug. Ignition means the complete burning of the charge of gas in the cylinder at top dead-center, at the time the working stroke of the piston commences. The means employed to accomplish this result is the ignition system. In the present-day type of gasoline engine a spark produced by high-voltage electricity is almost universally used for ignition. This high-voltage electricity is produced by a transformer.
Technical Paper

PENNSYLVANIA SECTION PAPER - ENGINEERING POSSIBILITIES AS INDICATED BY THE PROGRESS OF SCIENCE

1920-01-01
200082
The author views in perspective some facts from a purely scientific standpoint, and then shows their application to problems of the automotive industry. After reviewing the present facilities for measurement and the ability to make measurements of distances both infinitely small and large, as an aid toward a proper conception of the ultimate structure of matter, he applies this scientific knowledge in the direction of a solution of the fuel problem, which is a fundamental one because it involves the limitation of a natural resource. From 1918 and 1919 statistics, the amount of gasoline produced was something like 20 to 25 per cent of the crude oil pumped; 8 to 10 per cent is kerosene and 50 per cent is gas and fuel oil and a residue carrying lubricating oil, paraffin and carbon. Kerosene demand and production are practically fixed quantities; gasoline demands are increasing.
Technical Paper

KEROSENE AS A TRACTOR FUEL

1920-01-01
200078
Kerosene has advanced to the front rank as a fuel for the farm tractor within a decade. A heavily preponderating majority of tractors burn kerosene. The history of early oil engines is reviewed and some comparative costs of kerosene and gasoline fuel for tractors, obtained from tests made in January, 1920, are given. Kerosene tractor-engine development is then discussed. The conditions required for complete combustion are the same in principle for both kerosene and gasoline, but in actual practice a wider latitude in providing ideal conditions is permissible for gasoline than for kerosene. The four classes of commercial liquid fuels usable in internal-combustion engines are the alcohols, the gasolines, the common kerosenes and the low-cost heavy-oil fuels. The alcohols rank lowest in heating value per pound of combustible. Under existing economic conditions neither alcohol nor the fuel oils require consideration as available fuels for the tractor.
Technical Paper

DESIGN OF INTAKE MANIFOLDS FOR HEAVY FUELS

1920-01-01
200043
The adoption of the present system of feeding a number of cylinders in succession through a common intake manifold was based upon the idea that the fuel mixture would consist of air impregnated or carbureted with hydrocarbon vapor, but if the original designers of internal-combustion engines had supposed that the fuel would not be vaporized, existing instead as a more or less fine spray in suspension in the incoming air, it is doubtful that they would have had the courage to construct an engine with this type of fuel intake. That present fuel does not readily change to hydrocarbon vapor in the intake manifold is indicated by tables of vapor density of the different paraffin series of hydrocarbon compounds.
Technical Paper

SOME FACTORS OF ENGINE PERFORMANCE

1920-01-01
200042
A large number of tests were made in the altitude laboratory of the Bureau of Standards, using aircraft engines. The complete analysis of these tests was conducted under the direction of the Powerplants Committee of the National Advisory Committee for Aeronautics. Many of the engines were of the same make, differing in compression ratio or dimensions. The testing program included determinations of the brake-horsepower at various speeds and altitudes, or air densities, and the friction power, or the power required to operate the engine with no fuel or ignition at various speeds and air densities, with normal operating conditions of oil, water and the like. Some tests included determination of the effect of change of mixture ratio and of air temperature, and of different oils. The difficulties caused by the necessity of using indirect methods to ascertain the effect of various factors are outlined. The test analyses and curves are presented.
Technical Paper

PLYWOOD AND ITS USES IN AUTOMOBILE CONSTRUCTION

1920-01-01
200037
For many years plywood has been used for such automobile parts as roofs and dash and instrument-boards, but it was not until the closing of the European war that the extent to which this material was used in automobile construction greatly increased. The sudden requirement of airplanes created a large demand for plywood which would withstand the severest weather conditions. Glues were perfected that enabled plywood to withstand 8 hr. of boiling or 10 days of soaking in water without separation of the plies. Plywood as an engineering material is discussed. It is then compared in considerable detail with ordinary boards and also with metals and pulp boards, statistics and illustrations being given. The molding of plywood is considered with especial reference to employing plywood for surfaces having compound curvatures, and the limiting factors in the use of plywood for this purpose are mentioned.
Technical Paper

A TRACTOR ENGINE TEST

1920-01-01
200032
A four-cylinder 4 by 5-in. truck and tractor engine, designed for either kerosene or gasoline fuel and having the very low volumetric compression ratio of 3.36, was used. Only by suitable adjustments was it found possible to make it show a fuel consumption as low as 0.67 lb. per b.hp.-hr.; but with a slight variation in power and only a different carbureter adjustment the fuel consumption at 600 r.p.m. increased to about 1.2 lb., or 70 per cent, emphasizing the importance of knowing what constitutes the best engine adjustment and of disseminating such knowledge. The engine and its dimensions, the experimental apparatus and the method of testing are fully described and discussed, the results being presented in charts showing performance curves. These are described, analyzed and the results interpreted.
Technical Paper

ENGINE DESIGN FOR MAXIMUM POWER AND FUEL ECONOMY

1920-01-01
200058
Design factors are considered from the thermodynamic standpoint only, which excludes several factors affecting power and economy. The problem of air heating includes a consideration of its influence on pressure, the consequent lowering of pressure being counteracted to some extent by the resulting improvements in carburetion and distribution and by more rapid and complete combustion; the effects of delayed combustion, with a study of the thermodynamic conditions and possible improvements; and the results that are actually obtainable from lean and rich fuel mixtures. Fuel economy is difficult because its factors conflict with those of power. The benefit of the expansion of any elastic working medium to economy is emphasized. Charts from previous papers, showing the ratio of air to fuel by weight, are referred to and discussed, best economy being obtained with mixtures leaner than those giving maximum power.
Technical Paper

FACTORS INVOLVED IN FUEL UTILIZATION

1920-01-01
200060
From a laboratory examination of the controlling relationships between carburetion and engine performance still in progress, the general conclusions so far reached include fuel metering characteristics, the physical structure of the charge, fuel combustion factors and details of engine design and manufacture. In every throttle-controlled engine, the variation in fuel metering for best utilization is inversely functional with the relative loading and with the compression ratio, but the nature of the fuel leaves these general relationships undisturbed. The physical structure of the charge influences largely the net engine performance and the order of variation of the best metering with change in load. Perfect homogeneity in the charge is theoretically desirable but entails losses in performance.
X